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Letters

Approximations for the Symmetrical Parallel-Strip

Transmission Lie

J. M. ROCHELLE

Absfrucf-A single appro~ation that is valid for the capacitance

of both %videt} and “narrow)) parallel-strip transmission lines was

derived by abming that tie current ,distribution is uniform. An

amrotiate formula for the repulsive force between the strips was

also derived.

INTRODUCTION

Analysis of the finite-width parallel-strip transmission line diw

gramed in Fig. 1 is a challenging problem with a rich hktory of

contributions by many notable workers, includlng Maxwell and J. J.

Thomson. For a historical bibliography, the reader is referred to the

thesis and paper by Black and Higgins [1].

The exact electrostatic solution fm a homogeneous lossless &l-

electric can be obtained with a Schwarz–Christoffel transformation

which leads to a free-space line capacitance of

C = $ (F/m) (1)

where K and K’ are 6ornplete elliptic integrals of the first kind. Un-

fortunately, this, solution is extremely cumbersome to use because the

elliptic-integral argument is not an explicit function of the line-shape

ratio, ,R = w~b. The usefulness of the exact solution is also limited by

the lack of elliptic-integral tabulations for arguments- between 89 and

90°. For this reason, (1) cannot be conveniently evaluated for shape

ratios ~ 2.

Because of these difficulties, many approximate formulas for the

capacithllce and characteristic itnpedance have been developed. As

far as is known, none of these is individually valid for both narrow

and wide lines, which is not surpriskg, considering the large field

variations experienced over the R <<1 to R >>1 shape-ratio range.

‘I’he purpose of tbi$ communication is to show that an approximate

formula that is reasonably accurate over the entire R range does

exist, and that the formula can be derived by assuming that. the

current distribution is uniform across the conductors.

THE UNIFORM-CURRENT APPROXIMATION

Referring to Fig. 1, if the strips carry equal and opposite uniformly

distributed currents 1, then the repulsive force per unit length ex-

perienced by the filamentary curtent in a strip of width dz is [2]

/d2ydz I
dz

(w(y) = —
Ok

2~2 -W12 Y2+ (z — X)z
(2)

which integrates to

[ (%9-tan-’(+ldz “)dF (y) = ~, tan-’

Integrating (3) over ( –w/2 < z < w/2) gives
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Fig. 1. Transmission line formed of finite-width parallel strips.

F(y) = K { (l/w) tan-’ (w/y) – (y/2w’) in [1 + (w/y)’]) (4)
rr

for the total repulsive force per unit length;

When the strips are separated by a distance b, the stored energy is

/

b

f7(i) = – F (y) dy

o

(5)

if a repulsive force is assumed positive. Substitution of u = w/g

changes (5) to

(6)

Substitution of (4) into (6) gives

/

E

U (R) = (p12/27r) [u-’ In (1 + u’) – 2u-’ tan-’ u] du (7)
.

which can be integrated by stahdatd techniques to obtain

[
U(R) = ‘~ (l/R) tan-’ R – (1/4R2) in (1 + R2)

‘R

( )1

1+R2
+ (1/4) in ~ (8)

for the energy stored per unit length.

Making (8) equal to LI’/2 gives

[
L = z (l/R) tan-’ R – (1/4Rt)lh 1 + R2)

r

( )11+R2
+ (1/4) in ~ (9)

for the-approximate inductanc& per unit length (lI/m). If the parallel

strips are assumed to form a loss-free transmission line, then the

free-space capacitance per unit length can be computed from

LC = ~,e, which gives

[
C = (8/R) tan-’ R – (2/@) in (1 + R’)

( )1+21n 1+R2 ‘1

R2
(4mc0) F/m. (10)
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Fig. 2.

TABLE I

APPROXIMATE VALUES OF c/4TE0 FOR PARALLE&STIRIP ~
TRANSMISSION LINES

R Eq (10) Eq (11) Eq. (12) Eq (13) Eq (14)

0.01 0 0410 0,0417 0 0417

0 02 0 0462 0 0472 0 0472

0.05 0 0556 0 0571 0 0571

0.07 0.0601 0,0618 0 0618

0, 1 0.0657 0 0678 0 0678 0 0215 0 0803

0, 2 0 0803 0 0835 0 0833 0 0470 0 0907

05 0.113 0 120 0 118 0 0941 0 12[

0,7 0 132 0 143 0 139 0 119 0 140

1,0 0.159 0 180 0 ~65 O 152 0 168

2.0 0.246 0 361 0 2[0 0 249 0 Z58

50 0 496 0 086 0 511 0 515

70 0.661 0 045 0 678 0 681

10 0 0.905 0 926 0 928

20, 0 1 715 1 739 1 740

50 0 4.119 4 150 4, 150

70.0 5 701 5 750 5, 750

100, 0 $3 117 8 146 8 146
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comparison of captwitapce approximation form~as. Curve A is Bromwich’s wide=l~e formula; B
conductor approximation for narrow strips, and C is the uniform-current approximation.

is the

COMPARISON WITH OTHER APPROXIMATIONS

It is of interest to compare the uniform-current approximation

(10) with previously published approximations. .One approximation

for narrow lines (R. < 1) is obtained by awuming parallel round

conductors [3]. T&s approximation gjves

C = (me,) [ln (4/R) ]-1 F/m. (11)

A more refined narrow-line approximation given by Wheeler [4] is

C = (m-) [ln (4/R) + (1/S) ii?]-l F/m. (12)

An early wide-line (R > 1) approximation due to Bromwich [5]

is

c = (R@[l + (1/TR) (1 + h 27rR) 1 F/m (13)

and Wheeler’s [4] wide-line formula is

C = (R,,) [1 + (1/di) In (17.OkR + 15.71] ?/m, (14)

Equations (10)– (14) are compared in Table I, which indicates

that the uniform-current approximation is good for the entire range

of R values. It agrees well with (11) and (12) for narrow lines and

with (13) and (14) for wide lines. Equations (10), (11 ), and (13)

me graphically compared in Fig. 2.

Comparison with a few exact values calculated from (’1) indicates

that the maximum inaccuracy of the uniform-current approximation

occurs ne,ar R = 1 and is about —5 percent. This inaccuracy could

probably be reduced by a suitable choice of empirical correction

factors.

It, is worthwhile to mention that an inexact source distribution

must lead to a stored energy which is greater th?n the :,~tu~ value.

The uniform-current assumption is not exact, so the resulting energy
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given by (8) must bein excess of theactual stored energy. This in

turn means that the inductance approximation in (9) is always

greater than the exact inductance, and that the capacitance approxi-

mationin (10) is always less than the exact capacitance.

The fact that the capacitance obtained with the uniform-current

approximation isreasonably good forall Evalues means that (8) for

the stored energy must, also be a reasonably good approximation for

all Rvalues. This must mean that the gradient of (8) is very close to

theactual energy gradient, i.e., that the force expr~ionin (4) isa

very good approximation and should be useful in structural design

calculations for thin, parallel bus bars.

All of the results given here can also be obtained by starting with a

uniform charge dktribution. The resulting energy expression is

identical to (8) with pZj replaced by QZ/C.

ACKNOWLEDGMENT

The author wishes to thank J. S. Ryberg who assisted with the

calculations.

REFERENCES

[1] K. G. Black and T, J. Higgins, “Rigorous determination of the
parameters of microstrip transmission lines, ” IEEE Trans. Micro-
wave Theory Tech. (Special Issue—Sump. on Microwave Strip Cir-
CUitS), VO1. MTT-3, PP. 93–113, Mar. 1955.

[21 J. D. Kraus, Ekctromagnetics. New York” McGraw-HilL 1953.
p. 152.

[3] H. P. Palmer, “The capacitance of a parallel-plate capacitor by the
Schwartz–Christoffel transformation, ” AIEE Trans., vol. 56, PP.
363–366, 1937.

[4] H. A. Wheeler, “Transmission-line properties of parallel wide strips
by a conformal-mapping approximation, ” IEEE Trans. MicrOwaoe
T~eorv Teclc., vol. MTT-12, PP. 280-289. May 1964.

[.5] T. J. I’A. Bromwich, “Note on a condenser problem, ” Messenger
Math., vol. 31, pp. 1S4-192, 1902.

An Accurate Determination of the Characteristic Im-

pedance of the Coaxial System Consisting of a Square

Concentric with a Circle

HENRY J. RIBLET

Bowman [1] has shown how the rectangular region in the w plane

of Fig. 1, bounded by OABC, may be mapped conformably into the

trapezoidal region in the z plane of Fig. 1, bounded by OABC, by

means of the successive transformations

t = snz (w,k) ‘ (1)

[

2 (k + ik’)u 1
1/2

r = (1 + ‘u) (k + W’u)

(2)

(3)
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Fig. 1. Z and W coordinate planes.

where

(~)1/2 – ~, (,7#) 1/2

h’ =
(2)1/2 (~ + ~~t)lh “

It is clear that the equipotentials in the w plane which are hori-

zontal lines will map into portions of closed curves in the z plane

which encircle the inner square and that for one of these equipoten-

tials, points of intersection of the corresponding equipotential in the

z plane with the line segments OC and Al? are equidistant from

the center of the inner square. We are thus assured of the existence

of an equipotential in the z plane which is equidistant from the center

of the system at eight points spaced 45° apart. It is the object of

this letter to show that this curve differs very little from a circle for

the cases of greatest interest. and that we have a means of deter-

mining with considerable accuracy the characteristic impedance of

a coaxial line in which one of the conductors has a square cross seo

tion while the other has a circular cross section.

The problem of locating this equipotential in the z plane, and de-

termining how much it differe from a circle depends on the evaluation

of the incomplete elliptic integrals of the first kind in (4) in which

the moduli are complex and the integration is performed, in general,

along curves in the complex ~ plane. It turns out that the theory of

second-order modular transformations [2], Landen transformations

in complex form, is entirely adequate for the purpose, and that the

integrals may be evaluated with the help of a digital computer with

great accuracy.

Fig. 2 plots the values of the characteristic impedances for the

cases where the outer conductor is a square or a circle as a function

of the ratio of the circu~erence of the outer conductor to that of

the inner conductor. For impedance values in the vicinity of 25 Q,

the curved equipotential is circular within &o.2 percent, while at

the other extreme, where the impedance values are approximately

1000, the curved equipotential is circular within 2 parts in 107.

The reader should be reminded that k is the variable in terms of

which the two characteristic impedances and the other v~iables of

the problem may be expressed parametrically. It enters the analysis

as the modulus of the Jacobian elliptic function, sn (w,k) by means

of which the rectangle, 0A13C, in the w plane is mapped into the

upper-half t plane by (1). k varies from O to 1 and so controls the


