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Approximations for the Symmetrical Parallel-Strip
Transmission Line

J. M. ROCHELLE

. Absfract=-A single approximation that is valid for the capacitance
of both “wide” and “narrow” parallel-strip transmission lines was
derived by assuming that the current distribution is uniform. An
approximate formula for the repulsive force between the strips was
also derived.

INTRODUCTION

Analysis of the finite-width parallel-strip transmission line dia-
gramed in Fig. 1 is a challenging problem with a rich history of
contributions by many notable workers, including Maxwell and J. J.
Thomson. For a historical bibliography, the reader is referred to the
thesis and paper by Black and Higgins [1].

The exact electrostatic solution for a homogeneous lossless di-
electric can be obtained with a Schwarz—Christoffel transformation
which leads to a free-space line capacitance of

eoK .
=2 (#/m) | M

where K and K’ are comiplete elliptic integrals of the first kind. Un-
fortunately, this solution is extremely cumbersome to use because the
elliptic-integral argument is not an explicit function of the line-shape
ratio, B = w/b. The usefulness of the exact solution is also limited by
the lack of élliptic-integral tabulations for arguments between 89 and
90°. For this reason, (1) cannot be conveniently evaluated for shape
ratios 2 2.

Because of these difficulties, many approximate formulas for the
capacitance and characteristic impedance have been developed. As
far as is known, none of these is individually valid for both narrow
and wide lines, which is not surprising, considering the large field
variations experienced over the B < 1 to R >> 1 shape-ratio range.
The purpose of this communication is to show that an approximate
formula that is reasonably accéurate over the entire B range does
exist, and that the formula can be derived by assuming that the
current distribution is uniform across the conductors.

THE UNIFORM-CURRENT APPROXIMATION

Referring to Fig. 1, if the strips carry equal and opposite uniformly
distributed currents I, then the repulsive force per unit length ex-
perienced by the filamentary curtent in a strip of width dz is [2]

ultydz /"”2 dx
20wt J_ypy? + (2 — 2)?

dF (y) = @)

which integrates to

dF (y) = 2—’;%2 [tan‘1 (z_—i_—f_/g) — tan™t (L;m-)] de.  (3)

Integrating (3) over (—w/2 < z < w/2) gives
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Fig. 1. Transmission line formed of finite-width parallel strips.

F(y) = — {(1/W) tan™ (w/y) — (y/20*) In[1 + (w/y)*]} (%)

for the total repulsive force per unit length.
When the strips are separated by a distance b, the stored energy is

. b
U = - f F) dy 5)
0

if a repulsive force is assumed positive. Substitution of u = w/y
changes (5) to

R ’l,/2
U(R) =/ EF(u) du. 6)

Substitution of (4) into (6) gives
3.3
U(R) = (pI’/Z-:r)/ [w®ln (1 +u) —2u—2tantuldu (7)
which can be integrated by standard techniques to obtain

U(R) = —[(I/R) tant R — (1/4R?) In (1 + Rz)

1 2
+ @/m ln( L2 )] (s)

for the energy stored per unit length.
Making (8) equal to Li%/2 gives

L= 2—“[(1/}3) tant R — (1/4R%In1 + R?)
T

1+ R?
= )] ©

for the approximate inductance per unit length (H/m). If the parallel
strips are assumed to form a loss-free transmission line, then the
free-space capacitance per unit length can be computed from
LC = uoeo which gives

+ (1/4) ln(

= [(S/R) tan'R — (2/R*)In (1 + R?)

; -1
1 -1;32)] (4re) F/m.  (10)

+21n(
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TABLE 1
APPROXIMATE VALUES OF (' /47eq FOR PARALLEL-STRIP
TRANSMISSION LINES
R Eq (10) Eq (11) Eq. (12) Eq (13} Eq (14)
0.01 0 0410 0.0417 0 0417
0 02 0 0462 0 0472 0 0472
0.05 0 0556 0 0571 0 0571
0.07 0.0601 0.0618 0 0618
0.1 0.0657 0 0678 0 0678 0 0215 0 0803
0.2 0 0803 0 0835 0 0833 0 0470 0 0907
05 0-113 0120 0118 0 0941 0 2t
0.7 0132 0 143 0139 0 119 0 140
1.0 0.159 0 180 0165 0 152 0 168
2.0 0.246 0 361 0210 0 249 0 258
5 0 0 496 0 086 0511 0515
70 0.661 0 045 0 678 0 681
10 0 0.905 0 926 0 928
20.0 1 715 1 739 1 740
50 0 4.119 4 150 4.150
70.0 5 701 5 750 5,750
100. 0 8 117 8 146 8 146
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Fig. 2. Comparison of capagcitance approximation formulas. Curve A is Bromwich’s wide-line formula; B is the round-
conductor approxlmatlon for narrow strips, and C is the uniform-current approximation.
COMPARISON WITH OTHER APPROXIMATIONS and Wheeler’s [4] wide-line formula is
= (Re)[1 + (1/7R) In (17.Q8R + 15.71] F/m. (14)

It is of interest to compare the uniform-current approximation
(10) with previously pubhshed approximations. One approximation
for narrow lines (R < 1) is obtained by assuming parallel round
conductors [3]. This approximation gives

C = (re)[In ¢4/R) T F/m. (11)

A more refined narrow-line approximation given by Wheeler [4] is

= (re)[In (4/R) + (1/8)R*T* F/m. (12)

An early wide-line (R > 1) approximation due to Bromwich [5]
is '

'

= (Re)[1 + (1/7R) (1 +In2xR)] F/m 13)

Equations (10)—(14) are compared in Table I, which indjcates
that the uniform-current approximation is good for the entire range
of R values. It agrees well with (11) and (12) for narrow lines and
with (13) and (14) for wide lines. Equations (10), (11), and (13)
are graphically compared in Fig. 2.

Comparison with a few exact values calculated from (1) indicates
that the maximum inaccuracy of the uniform-current approximation
occurs near B = 1 and is about —5 percent. This inaccuracy could
probably be reduced by a suitable choice of empirics]l correction
factors.

It is worthwhile to mention that an inexact source distribution
must lead to a stored energy which is greater than the zctual value.
The uniform-current assumption is not exact, so the resulting energy
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given by (8) must be in excess of the actual stored energy. This in
turn means that the inductance approximation in (9) is always
greater than the exact inductance, and that the capacitance approxi-
mation in (10) is always less than the exact capacitance.

The fact that the capacitance obtained with the uniform-current
approximation is reasonably good for all B values means that (8) for
the stored energy must also be a reasonably good approximation for
all R values. This must mean that the gradient of (8) is very close to
the actual energy gradient, i.e., that the force expression in (4) is a
very good approximation and should be useful in structural design
caleulations for thin, parallel bus bars.

All of the results given here can also be obtained by starting with a
uniform charge distribution. The resulting energy expressmn is
identical to (8) with wI® replaced by @?/e.
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1953,

An Accurate Determination of the Characteristic Im-
pedance of the Coaxial System Consisting of a Square
Concentric with a Circle

HENRY J. RIBLET

Bowman [1] has shown how the rectangular region in the w plane
of Fig. 1, bounded by 04 BC, may be mapped conformally into the
trapezoidal region in the z plane of Fig. 1, bounded by 0ABC, by
means of the successive transformations

t = sn? (w,k) ’ (1)
w=" = 1 @)
[ 2tk e
‘[u+uﬂk+ww] ®
C1-d [ de
kR [y DA =) (@~ e I

d¢ 4
,[a—a —wamgs Y
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Fig. 1. Z and W coordinate planes.
where
1472
kz 4 —— @) (k)12
A= ———————
@)V2(k + k')
and
1+
(k)vz — 2 (kl)m
N o= -
(2)1/2(k + zk’)llz
Of course

AN =1

It is clear that the equipotentials in the w plane which are hori-
zontal lines will map into portions of closed curves in the z plane
which encircle the inner square and that for one of these equipoten-
tials, points of intersection of the corresponding equipotential in the
2 plané with the line segments 0C and AB are equidistant from
the center of the inner square. We are thus assured of the existence:
of an equipotential in the z plane which is equidistant from the center
of the system at eight points spaced 45° apart. It is the object of
this letter to show that this curve differs very little from a circle for
the cases of greatest interest.and that we have a means of deter-
mining with considerable accuracy the characteristic impedance of
a coaxial line in which one of the conductors has a square cross sec-
tion while the other has a circular cross section.

The problem of locating this equipotential in the z plane, and de-
termining how much it differs from a circle depends on the evaluation
of the incomplete elliptic integrals of the first kind in (4) in which
the moduli are complex and the integration is performed, in general,
along curves in the complex { plane. It turns out that the theory of
second-order modular transformations [27, Landen transformations
in complex form, is entirely adequate for the purpose, and that the
integrals may be evaluated with the help of a digital computer Wlth
great accuracy.

Fig. 2 plots the values of the characteristic impedances for the
cases where the outer conductor is a square or a circle as a function
of the ratio of the circumference of the outer conductor to that of
the inner conductor. For impedance values in the vicinity of 25 @,
the curved equipotential is circular within 0.2 percent, while at
the other extreme, where the impedance values are approximately
100 Q, the curved equipotential is cireular within 2 parts in 10%

The reader should be reminded that k is the variable in terms of
which the two characteristic impedances and the other variables of
the problem may be expressed parametrically. It enters the analysis
as the modulus of the Jacobian elliptic function, sn (w,k) by means
of which the rectangle, 04ABC, in the w plane is mapped into the
upper-half ¢ plane by (1). k varies from 0 to 1 and so controls the



